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Resolution and algorithmic influences on the baroclinic pressure gradient
in finite element-based hydrodynamic models

K.M. Dresback®, C.A. Blain®, and R.L. Kolar®

3School of Civil Engineering and Environmental Science, University of Oklahoma,
202 W. Boyd St., Room 334, Norman, OK 73019

®Qceanography Division, Code 7322, Naval Research Laboratory,
Stennis Space Center, MS 39529

In 3D shallow water models, the baroclinic pressure gradient (BPG) can become un-
stable or physically unrealistic in areas of rapidly changing topography and/or density
fields. By using a 2D finite element z-z model, whose formulation uses the generalized
wave continuity equation, we assess the impact on accuracy of three methods used to
compute the BPG: the sigma coordinate method, the z—coordinate (level coordinate)
method and a hybrid method that switches from sigma coordinates to z—coordinates at
a prescribed depth. Resolution studies then look at horizontal and vertical resolution
independently, and the interplay of the horizontal and vertical resolutions for these three
methods of computing the BPG. Numerical experiments are carried out on several do-
mains, from constant to rapidly changing bathymetry, with two different density fields,
which vary only in the horizontal or vertical directions. Results thus far indicate that the
z—coordinate method provides the least amount of error in the solution.

1. INTRODUCTION

In areas where the topography changes rapidly, such as a seamount or continental rise
region, many three-dimensional hydrodynamic models have problems computing a stable
and realistic BPG. The main topic of this paper is the calculation of the BPG term. The
motivation for this paper stems from anomalous results observed by Blain [4] in baroclinic
Arabian Gulf simulations using a wave-continuity based FE model. Figure 1 illustrates
the problem, where the source of error was identified as an unrealistic (and unstable)
BPG computed by the model in a region of steep bathymetry and density gradients.

Four common coordinate systems are utilized in ocean models: sigma coordinates,
which are terrain-following; z—coordinates (also called level coordinates), which follow
a fixed depth [3]; isopycnal, which follow lines of constant density; and hybrid, which
combines the sigma and z—coordinates. Advantages and disadvantages exist for all of
these coordinate systems, which several investigators have mentioned in their studies
(e.g., [3,6,16]). To summarize, sigma coordinates provide more resolution in the shallower
parts of the domain and capture the bottom and free moving surfaces, thus allowing
the boundary conditions to be implemented easily. The disadvantage of sigma coordinate
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. Figure 1. Instabilities caused by errors in the calculation of the BPG during simulations
of the Arabian Gulf [4].

system involves the “hydrostatic inconsistency” condition, first discussed in the context of
oceanography models by Haney [11]. This condition indicates that in areas of steep sloping
topography, there needs to be an accurate horizontal resolution in order to obtain stable
and realistic BPG results. However, in some cases the amount of horizontal resolution
needed to produce accurate results lead to high computational costs. If the “hydrostatic
inconsistency” condition is not met, then spurious modes tend to be introduced into the
solution through truncation errors obtained from the transformation of the BPG term to
the sigma coordinate system. Thus, in the areas of sloping bathymetry, large truncation
errors can mask the true BPG [6]. Suggestions from some researchers have reduced these
errors, but the problem has not been completely solved. In some models, this problem has
been reduced by subtracting a mean vertical density gradient or an area-averaged density
from the initial density field [16-18].

As for z—coordinates, they do not suffer from problems with the coordinate transfor-
mation. However, the disadvantage of the z—coordinate system is its inability to properly
resolve the flow around the bottom topography in areas of sloping bathymetry (“stair-
step” resolution), and the correct flow at the surface is often not captured [6]. To obtain-
an accurate BPG where sloping bathymetries come into play for z—coordinates, several
researchers suggest using extrapolation techniques, e.g. Beckmann and Haidvogel utilized
a Chebyshev polynomial [2].

Another method that has been used in global ocean models is isopycnal coordmates
which follow lines of constant density [10]. This type of coordinate system does well in
the deeper parts of the ocean because the density profile tends to be stably stratified.
However, this coordinate system does not do well in shallower parts of the ocean due to
the mixed stratified nature and due to the mixing and advection processes that tend to
be dominant in this part of the ocean [6]. It also has the same “stair-step” resolution
problem as the z—coordinate method because the lines of constant density do not follow
the topography changes [5].
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Hybrid methods have been suggested that take advantage of the strengths of sigma
and z—coordinate, which have been used successfully in several models (e.g, [6,16]). The
degree of hybridization between the two coordinate systems and the technique of the
hybridization can both vary in the model. For example, Beckers [1] examined a hybrid
scheme that used only one z—coordinate (fixed) with sigma coordinates above and below
it. Also, Spall and Robinson [20] analyzed a hybrid scheme that used z—coordinates in
the upper layers and sigma coordinates in the bottom layers. Another hybrid scheme,
which is used by NCOM (Naval Coastal Ocean Model) [16], applies sigma coordinates in
the upper layers and the z—coordinates in the bottom layers. We note that other types of
hybrid models have been developed, such as HYCOM [7], which switches from isopycnal
in deep water to sigma or z—coordinates in coastal areas.

Several researchers have investigated the unstable or unrealistic results of the BPG
term in the context of finite difference models (e.g., [6,11,18]), however, only a few studies
have been done in the context of finite element or unstructured grid models. Using a
finite element model, Walters and Foreman looked at the influence of resolution on the
velocity field using sigma coordinates, first varying the horizontal resolution for a fixed
vertical resolution and then vice versa [21]. They determined that the sigma coordinate
system produced either second- or first-order accurate solutions, depending on the density
profile, for the continental shelf region. From their studies, they indicated that the sigma
coordinate system studied should be replaced with either z—coordinates or the density
field should be post-processed using a density gradient.

Fortunato and Baptista evaluated all of the horizontal gradients in the momentum
equation in either sigma coordinates or z—coordinates in a 2D barotropic and baroclinic
(diagnostic) model [9]. They determined that evaluating all of the horizontal gradients in
the sigma coordinate system provided the best approach in most cases; however, in certain
cases the z—coordinates proved to be better, in particular for the case study presented in
Walters and Foreman [21]. They also provided some steps to obtain the proper horizontal
resolution for a sigma coordinate model near steep bathymetry gradients [9).

Herein, we build on this earlier work and investigate BPG calculations using several of
these coordinate systems in a finite element model. This study will only look at methods
to calculate the BPG term, while all other horizontal gradients in the momentum equation
will utilize sigma coordinates. In this respect, it differs from the work done by Fortunato
and Baptista [9]. The study extends the work done by Walters and Foreman [21] by
looking at other methods of calculating the BPG term.

2. BACKGROUND OF THE MODEL

The model utilized in this study is a 2D laterally-averaged shallow water model that
uses the finite element method; it follows the same development steps as the 3D ADCIRC
model [13]. It employs a mode splitting scheme in which the external mode solves a 1D
(depth-averaged) continuity equation for the elevation field and a 2D (z-z) momentum
equation to resolve the velocity field. The depth-averaged velocity values utilized in the
continuity equation are obtained from the integration of the 2D momentum equation
results. We replace the continuity equation with the generalized wave continuity equation
to eliminate the spurious modes that occur with primitive finite element models (e.g.,
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[12,13,15]). The generalized wave continuity equation is as follows:

82C ac 67'0
a2 T V%
(1)
0 |8(HUU) o¢ O*(HU) _
92 T'l-gﬂax E; B2 +73p—1HU — B, — D,| =0,

where ( is surface elevation above a datum, H is the total fAuid depth, U is the depth-
averaged velocity, g is gravity, D, is the depth-integrated momentum dispersion (momen-
tum transfer due to a non-uniform velocity profile), B, is the depth-integrated baroclinic
forcing, 7o is a numerical parameter that allows either a pure wave form of the equation
when the parameter is small or the primitive form of the continuity equation if the pa-
rameter is large, and 73p = Kgipup, where Ky, is the linear slip coefficient and wuy is the
velocity at the bottom boundary. This code does not include the atmospheric forcing or
the Coriolis forcing terms. We currently utilize a constant eddy viscosity coefﬁment E;,
in the horizontal direction.

The model employs the non-conservative form of the momentum equation, which is as
follows:

u  Bu  Ou ¢ Tex | | -
o Vet =Y am+az< ) ba +ma, @)

where Tez/Po = E,0u/dz is the vertical stress gradient with an eddy viscosity parameter-

ization, m, = 0/0x(E;0(u)/0z) is the lateral stress gradient also with an eddy viscosity
parameterization and

ba: aam/ (p pOPO)d (3)

is the BPG. To evaluate Equation 2, we mapped the terms onto a sigma coordinate system,

where o ranges from a at the surface (a = 1) to b at the bottom (b = —1). The equation
in the sigma coordinate system is as follows:

ou du ou ¢ —b\ 0 (1

= - T 4
at+“axa+“’°’< )80 9ax+< )80( pas s 4)

where m, = 9/ 81:0(Elc9u/ 0z,) and w, incorporates terms from the variable transforma-
tion (see [13] for more details). The evaluation of the m, term occurs along the stretched
surfaces directly with no coordinate transformation.

These equations use C° linear finite elements for the spatial discretization with the exact
quadrature rules. For the temporal discretization, a three time-level scheme centered at k
is used in Equation (1) and a two time-level scheme centered at k+1/2 is used in Equation
(4). Except for the BPG, all the horizontal derivatives utilize the sigma coordinate system,;
the BPG term uses different coordinate systems as described below.

In this work, we have isolated the BPG term (b, in Equation (4)) and only implement
this term differently in accordance with the different coordinate systems. Initially, we
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calculate a buoyancy term (Equation (5)), which then is used to evaluate the horizontal
gradient:

bouyancy = g / ()

- Then in z—coordmates, the BPG is given as

9 |
be = 5 (bouyancy), (6)

while in the sigma coordinate system, the BPG is given as

0 0z B(bouyancy) ' )
oz, Oz 0z

In this study, we utilize both of these equations along with a combination of the two to
develop the hybrid scheme. The hybrid scheme employed in our study follows the method
used in NCOM [16], which switches from sigma coordinates to z—coordinates as the
depth increases. In the z—coordinate BPG implementation, we utilize the framework of
sigma coordinates for all terms except the BPG, which computes horizontal gradients by
interpolating the values between adjacent vertical nodes [2,8]. Near bottom boundaries, a
linear extrapolation technique is used in regions where gradients based on z—coordinates

“run into the ground”. Also note that in this study, all test cases were conducted utilizing
the diagnostic baroclinic mode of the model.

by =

3. NUMERICAL EXPERIMENTS

Three domains and two different density profiles serve as the test cases for this study.
In order to evaluate each of the methods for calculating the BPG term, we compare the
error behavior of the BPG, the horizontal velocity field, and the vertical velocity field. We
utilize a L, norm to determine the errors at several stations. Point comparisons at twelve
locations are made by linearly interpolating results from neighboring nodes. These twelve
errors are then averaged to produce one value for each grid resolution. In all of the test
cases, we evaluated the horizontal and vertical resolutions independently, and then the
interplay between both resolutions. In each test case, we compared the results to a “true
solution”, which is obtained either from an analytical solution or from grid refinement
studies. We indicate below what the “true solution” is for each test case.

3.1. Test case 1

In this test case, a 48-km domain has a constant bottom slope between 10 m at the
shallow end to 100 m at the deep end (approximately a 2% slope), and the density
profile varies linearly from 1026 kg/m? (shallow) to 1028 kg/m? (deep) in the horizontal
direction, with no variation in the vertical direction. Boundary conditions were no-flux
land boundaries on both sides of the domain. All nonlinear terms were evaluated in the
equations. The eddy viscosity parameters in both the lateral and vertical directions are
kept constant at 0 and 0.051 m?/s, respectively, and bottom friction is evaluated with a
linear slip condition that utilizes a K, value of 0.05 m/s. In this test case, the GWC
equation numerical parameter, 7, was set to 0.001 sec™* and a time step of 0.1 sec was
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Figure 2. Bathymetry and density pro-
files for Test Case 2. Density values, which
vary from 1000 to 1002 kg/m3, are shown
changing from blue in lighter water to red
in the heavier waters. Bathymetry ranges
from 10 to 600 m.

Figure 3. Bathymetry and density pro-
files for Test Case 3. Density values, which
vary from 1000 to 1002 kg/m3, are shown
changing from blue in lighter water to red
in the heavier water. Bathymetry ranges
from 10 to 300 m. |

utilized for a simulation of a day. Results were recorded 90 times over the course of the
simulation. »

A “true solution” for this test case was obtained by refining the grid in the horizontal
direction until the Ly error changes were within machine accuracy and had reached con-
vergence, which occurred with a constant nodal spacing of approximately 180 m. This
served as the “true solution” for the horizontal resolution study. Similarly for the vertical
resolution study, we refined the grid in the vertical until the Ly error changes showed
that the solution had converged, which occurred with 129 nodes in the vertical. For the

interplay study, a nodal spacing of approximately 180 m in the hor1zontal with 129 nodes
in the vertical was used for the “true solution.”

3.2. Test case 2

The second test case is taken from both Walters and Foreman [21] and Fortunato and
Baptista [9], which provide a test case that mimics the shelf break region. The bathymetry
‘varies linearly in three different areas along a 50 km slice as shown in Figure 2. Density
varies only in the vertical and depends on depth, as shown in Figure 2. The density field
above 100 m comes from the following relationship: 1001 — cos(0.017z), while below 100
m, a constant density value of 1002 kg/m3 is used. Boundary conditions were no-flux
land boundaries on both sides of the domain. All nonlinear terms were evaluated in the
equations. The eddy viscosity parameters in both the lateral and vertical directions are
kept constant at 0 and 0.051 m?/s, respectively, and bottom friction is evaluated with a
linear slip condition that utilizes a Kgip value of 0.001 m/s. In this test case, the GWC
equation numerical parameter, 7o, was set to 0.001 sec™* and a time step of 0.1 sec was
utilized for a simulation of a day. Results were recorded 90 times over the course of the
simulation.

For this test case, we compared the results to an analytical solution. As noted by
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Walters and Foreman [21] and Fortunato and Baptista [9], the analytical solution for this
test case is zero because there are no boundary forcings and the density varies only in the
vertical direction (stable stratification) and not horizontally.

3.3. Test case 3

In this test case, we analyzed a different bathymetry with the same density profile
as the second test case. For the bathymetry, we developed a domain that includes a
seamount, along with a change in topography that mimics the continental shelf region (see
Figure 3). Boundary conditions were a no-flux land boundary and elevation boundary
of zero on the opposite side of the domain. All nonlinear terms were evaluated in the
equations. Eddy viscosity parameters in both the lateral and vertical directions are kept
constant at 0 and 0.051 m?/s, respectively. The bottom friction was evaluated with a
linear slip condition that utilized a Ky, value of 0.001 m/s. Here again, the GWC
equation numerical parameter, 7o, was set to 0.001 sec™! and a time step of 0.1 sec was
utilized for a simulation of a day. Results were recorded 90 times over the course of the
simulation.

As with the second test case, we compared the results from this test case to an analytical
solution of zero, because there are no boundary forcings and the density varies only in
the vertical direction (stable stratification) and not horizontally.

4. EXPERIMENTAL RESULTS

4.1. Test case 1

The results of the horizontal resolution study for the linearly sloping bathymetry showed
that the only significant difference between the three methods for calculating the BPG was
in the value of the BPG itself. For all the refinements in the horizontal, the z—coordinate
method exhibits a continual decrease in the BPG error; however, sigma coordinates and
the hybrid scheme show that the BPG error decreases rapidly until the nodal spacing is
approximately 6000 m and then decrease slowly for the more refined grids. The averaged
Ly errors for the horizontal and vertical velocity fields do not show any appreciable changes
based on the different methods for calculating the BPG. However, when looking at time
series of horizontal velocity results, they indicate that there are subtle changes between
the methods, yet these changes are masked when computing the average error over space
and time. Similar results were found for the Lo, norm.

Results of the vertical resolution study are nearly identical for the different ways of
evaluating the BPG, as was expected since the variation of the density field is only based
in the horizontal direction. Similarly, for this model problem, there are no observable

changes between the different methods when looking at the interplay of the horizontal
and vertical resolution.

4.2. Test case 2

Figures 4 and 5 illustrate the results of the horizontal resolution study for the second
test case for the BPG and horizontal velocity. As can be seen, the evaluation of the BPG
with 2—coordinates produced the best results, while sigma coordinates produced greater
errors. This greater sigma error is expected because sigma coordinates are more prone to
errors in evaluating the BPG when the density field only varies in the vertical direction.
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z—coordinates (solid line). dashes) and z—coordinates (solid line).

The stretching of the coordinate system in the vertical causes there to be two different
density values between the two adjacent sigma nodes [9]. The hybrid scheme shows that
as refinement increases in the horizontal direction the error decreases and approaches
the errors that are found using z—coordinates. The hybrid scheme in this case switches
from the sigma coordinates to z—coordinates in the upper layer (at z = —25m), where
there are changes in the density. These results follow that of Fortunato and Baptista
[9] in indicating that 2—coordinates provide the best solution to this test case; however,
the hybrid scheme shows promising results. Also note that errors in the BPG produced
corresponding errors in the horizontal velocity fields (as shown in Figure 5). Similar error
behavior is seen in the vertical velocity field (not shown).

We also evaluated the influence of the vertical resolution on the BPG and velocity fields.
Figures 6 and 7 show the results for the BPG and horizontal velocity. As can be seen, the
errors for z—coordinates and hybrid scheme decrease when vertical resolution is added;
however, we find that, as further vertical resolution is added, the sigma coordinate error
starts to separate further from the other two BPG calculation methods and appears to
reach an asymptotic value. Similar error behavior is seen in the vertical velocity field (not
shown). ‘

Next, we examined the interplay of the horizontal and vertical resolution and their effect
on the BPG and velocity errors. Results (not shown) indicate that the hybrid scheme and
z—coordinates had similar errors as refinement occurred in both horizontal and vertical
directions, while the sigma coordinate error is higher by approximately one-half log cycle
than the other methods.. :

Lastly for this test case, we evaluated the placement of the depth at which the hybrid
method switches coordinate systems. Results show that the depth should be between 20
m and 40 m to provide the lowest error. This depth range corresponds to the region above
the rapid change in the density field.
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4.3. Test case 3

For this test case, the horizontal resolution study showed similar results as the second
test case with the sigma coordinate error being higher than the other two BPG calculation
methods (Figures 8 and 9). BPG results indicate that errors in the hybrid scheme (which
switches from sigma coordinates to z—coordinates at 2 = —25 m) coincide with those
of the z—coordinate method as the grid is refined, while the sigma coordinate error is
approximately one-half log cycle higher. These BPG errors translate to similar errors in
the horizontal velocity for all the methods (cf. Figures 8 and 9). We found similar results
in the error behavior for the vertical velocity (not shown).

Figures 10 and 11 indicate how vertical resolution affects the error in calculating the
BPG and horizontal velocity. The behavior of the three BPG calculation methods ex-
hibits the same trends as in the previous test case with z—coordinates and the hybrid
scheme having less error than sigma coordinates. Also, the sigma coordinate error tends
toward an asymptote for both the BPG and horizontal velocity. Results for the vertical
velocity show similar error behavior. In comparing the vertical resolution results from the
second test case to the results from this test, one noticeable difference is that the sigma
coordinate error tends to separate itself more from other two BPG calculation methods.
More specifically in Test Case 2, we find that as the vertical resolution is relaxed the
errors approach the same value for each of the BPG calculation method but not in Test
Case 3 (cf. Figures 7 and 11). :

Next, we analyzed the interplay of the horizontal and vertical resolution. BPG errors
(not shown) indicate that in the grids of lower resolution (both horizontal and vertical
directions) the three methods of calculating the BPG approach similar values; however,
as more resolution is added in both directions the hybrid scheme and z—coordinates show
similar errors, while the sigma coordinate error is higher than the other methods. In
the horizontal velocity results, we find that at the lower resolutions the sigma coordinate
error is slightly lower than the other two methods of calculating the BPG; however, as
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- grid refinement occurs the sigma coordinate error is higher than that of the other two
methods of calculating the BPG. Similar behavior is found in the vertical velocity results.
Lastly for this test case, we also evaluated the placement of the depth at which the
hybrid method switches coordinate systems. Results indicate the depth should be between
10 m to 30 m for minimal error. As with Test Case 2, this depth range again corresponds
to the region above the rapid change in the density field.

5. CONCLUSIONS AND FUTURE WORK

Herein, we present some initial results from an assessment of how the coordinate method
used to calculate the BPG and resolution impact simulation results. This study uses a 2D
laterally-averaged model to investigate these changes. Evidence thus far indicates that
the z—coordinate method for calculating the BPG provides the best results. However, the
- three test cases used in this paper are more favorable toward the z—coordinate system,
so in future work, we will look at other test cases in which the density and bathymetry
profiles mimic more “real” world applications, as in the Arabian Gulf problem presented
in the introduction. We will also evaluate variable grids with these methods for calculating
the BPG. Finally, we plan to look at alternative error measures, such as the Cumulative
Area Faction Error (CAFE) plots [14] or the grid convergence index (GCI) [19], which
may be less hkely to mask errors through averaging procedures.
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